Skip to main content

Style Options

Layout Style

Colors schema

Direction

Email :MUSCATCHEMICAL.COM @ gmail.com Support : 00968 99489269
Whats APP:: Oman: +968 93960629
Oman:+968 99489269 UAE:+971569159739

Bordeaux Mixture Fungicide

Bordeaux Mixture exporter and stockist in India, Oman and the Middle East. We are keeping ready stock of materials to complete our regular customer demand locally and globally.

Tag Identification

Uses of Copper Compounds: General Uses

 

 

 

To trace the history of copper compounds it would be necessary to go back much further than the fourth millennium BC. Records found in the tombs of the early Egyptians suggest that, at least, this ancient civilisation employed copper sulphate as a mordant in their dyeing process. Today, more than 5,000 years later, copper sulphate is still employed by the world's dyeing industry in the after treatment of certain dyes to improve their fastness to light and washing.

Another equally early recorded use for copper compounds was for the making of ointments and other medical preparations. Later, the Greek civilisation of the pre-Christian era of Hypocrates (circa 400 BC) saw the prescribing of copper sulphate for pulmonary diseases and by the 18th century AD it had come into wide clinical use in the western world, being employed for the treatment of mental disorders and afflictions of the lungs.

It is noteworthy that copper sulphate has lost none of its effectiveness over the centuries, neither have any harmful side effects been reported. Copper sulphate is still, however, highly prized by some inhabitants of Africa and Asia for healing sores and skin diseases. In the West it is widely used in baby foods and in mineral and vitamin tonics and pills.

Copper has a wide spectrum of effectiveness against the many biological agents of timber and fabric decay. It renders them unpalatable to insects and protects them from fungus attack. Copper sulphate has been in use since 1838 for preserving timber and is today the base for many proprietary wood preservatives.

The discovery more than 80 years ago that many algae are highly susceptible to copper, led to the use of copper salts by water engineers to prevent the development of algae in potable water reservoirs. They are also employed to control green slime and similar algal scums in farm ponds, rice fields, irrigation and drainage canals, rivers, lakes and swimming pools.

Another well known use for copper compounds is as a molluscicide for the control of slugs and snails. Less than one part of copper per million parts of water can control disease-transmitting aquatic snails, which are responsible for schistosomiasis or bilharzia in humans in tropical countries and fascioliasis or liver fluke of animals in both tropical and temperate climates.

 


Bordeaux Mixture is a combination of hydrated lime and copper sulfate.

Bordeaux Mixture is also a mixture of CuSO4 and hydrated lime(Ca(OH)2).
Copper sulfate is a fungicide used to control bacterial and fungal diseases of fruit, vegetable, nut and field crops. Some of the diseases that are controlled by this fungicide include mildew, leaf spots, blights and apple scab. It is used in combination with lime and water as a protective fungicide, referred to as Bordeaux mixture, for leaf application and seed treatment. It is also used as an algaecide, an herbicide in irrigation and municipal water treatment systems, and as a molluscicide, a material used to repel and kill slugs and snails. It is also used as a raticide.

IT'S TOXICITY;
CuSO4 is acutely toxic and usually doesn't affect a conscious person as after ingestion due to its irritant activity vomiting takes place. It may cause conjunctivitis and anaemia when exposed to the eyes and skin.
 
IT'S WORKING;
Copper-based fungicides work by coating the plant leaf surface with minuscule particles of the active ingredient. These particles react with moisture on the leaf surface and release copper ions that kill bacteria and prevent fungal spores from germinating 
				RXSOL Agrichem Division is a renowned manufacturer and marketer of products that fulfill the essential nutritional needs of the crops.


Envisioned in the year 1995 Today we take pride in being one of the leading manufacturer of agrochemicals and fertilizer. 
Products such as 
Fungicides
Herbicides
Insecticides
Straight Fertilizers
Micronutrients
Water Soluble fertilizers
ORGANIC Fertilizers

FUNGICIDE 
Fungicides are pesticides that kill or prevent the growth of fungi and their spores. They can be used to control fungi that damage plants,including rusts, mildews and blights. They might also be used to control mold and mildew in other settings.
          1. Mancozeb 75% WP : MAC-THANE80 WP -  Mancozeb75% WP is a dithiocarbamate fungicide and affects the nervous system through their main metabolite, carbon disulfide. It is a multisite protective fungicide and inhibits spore germination.

HERBICIDE 
A herbicide is a pesticide used to kill unwanted plants. Selective herbicides kill certain targets while leaving the desired crop relatively unharmed. Some of these act by interfering with the growth of the weed and are often based on plant hormones.
           1} Glyphosate 48% SL
           2} Metribuzin 70% WP
           3} Pendimethaline 30% EC
           4} 2,4-D Amine Salt 58% SL

INSECTICIDE
Insecticides are pesticides that are formulated to kill, harm, repel or mitigate one or more species of insect. Insecticides work in different ways. Some insecticides disrupt the nervous system, whereas others may damage their exoskeletons, repel them or control them by some other means.

              1}Alphacyermetharin 10% EC
              2}Lambdacyhalothrin 5% EC
              3}Cypermethrin 25% EC
              4}Deltamethrin 2.8% EC
              5}Deltamethrin 2.5% WP
              6}Imidaclorid 17.8% SL
              7}Imidacloprid 30.5% EC
              8}Imidacloprid 48% EC
              9}Lambdacyhalothrin4.9%
              10}Acetamipirid 20% SP
              11}Emamectin Benzoate 5% SG
              12}Imidacloprid 70% WG

FERTILIZERS - 1}Boric Acid
              2}Borax
              3}Mono Potassium Phosphate
              4}Calclum Nitrate
              5}Urea Phosphate  
              6}Mono Ammonium Phosphate  
              7}Potassium Scheonite
              8}NPK 19-19-19
              9}NPK 20-20-20
              10}NPK 13-40-13
              11}Ammonium Sulphate
              12}Zinc Sulphate Monohydrate
              13}Zinc Sulphate Heptahydrate
              14}Ferrous Sulphate Heptahydrate
              15}Ferrous Sulphate Monohydrate
              16}Magneslum Sulphate 
              17}Potassium Sulphate
              18}Potassium Nitrate
              19}NPK 17-17-17
              20}Calclum Ammonium Nitrate
              21}Diammonium Phosphate
              22}Urea
              23}Manganese Sulphate

Uses of Bordeaux

Classification Applications
Agriculture  
Major uses Preparation of Bordeaux and Burgundy mixtures for use as fungicides
  Manufacture of other copper fungicides such as copper-lime dust, tribasic
  copper sulphate, copper carbonate and cuprous oxide
  Manufacture of insecticides such as copper arsenite and Paris green
  Control of fungus diseases (see below)
  Correction of copper deficiency in soils
  Correction of copper deficiency in animals
  Growth stimulant for fattening pigs and broiler chickens
  Molluscicide for the destruction of slugs and snails, particularly the snail host of the liver fluke
Other uses Seed dressing
  Soil steriliser, e.g. Cheshunt compound (a mixture of copper sulphate and ammonium carbonate) to prevent "damping-off" disease of tomato, etc.
  Control and prevention of foot rot in sheep and cattle
  Bacteriastat for addition to sheep dips
  Disinfectant in prevention of the spread of swine erysepelas and white scours in calves
  Control of scum in farm ponds
  Plant nutrient in rice fields
  Preservative for wooden posts, wooden buildings, etc.
  Preservative for wooden fruit boxes, planting baskets and other containers
  Ingredient of vermin repellents, e.g. for application to bark of trees against rabbits
  Stimulant of latex yield on rubber plantations
  Protection against algal growths on flower pots
Public Health and Medicine  
  Destruction of algal blooms in reservoirs and swimming pools
  Prevention of the spread of athletes foot in warm climates, by incorporation in the flooring mixture of swimming baths
  Control of bilharzia in tropical countries, as a molluscicide
  Prevention of malaria, in the preparation of Paris green for use against mosquito larvae
  Antiseptic and germicide against fungus infections
  Catalyst or raw material for the preparation of copper catalysts used in the manufacture of pharmaceutical products
Industry  
Adhesives Preservative in casein and other glues
  Additive to bookbinding pastes and glues, for insecticidal purposes
  Additive to animal and silicate glues to give water resistance
Building Timber preservative and in the preparation of other wood preservatives, e.g. oil based copper naphthenates and water based copper/chrome/arsenic for the
  prevention of woodworms and wood rots
  Ingredient of plaster to prevent fungus infection, e.g. to prevent the spread of dry rot
  Ingredient of concrete, both as a colouring matter and as an antiseptic, e.g. for use in and around swimming pools
  Modification of the setting of concrete
  Protection against lichens, moulds and similar growths on asbestos cement roofing and other building materials
  Control of the growth of tree roots in sewers
Chemical Preparation of catalysts for use in many industries
  Purification of gases, e.g. removal of hydrogen chloride and hydrogen sulphide
  Precipitation promoter in purifying zinc sulphate solutions
  Precipitation of alkaloids as double salts from crude extracts
  Source of other copper compounds such as copper carbonate silicate/arsenite/
  aceto-arsenite/resinate/stearate/tartrate/oleate naphthenate/chromate/chlorate
  /alginate/fluoride/hydroxide, cuprous oxide/chloride/cyanide and
  cuprammonium compounds
 Decorative trades  Colouring glass
   Colouring cement and plaster
   Colouring ceramic wares
   Alteration of metal colours, e.g. darkening of zinc, colouring aluminium
 Dyestuffs  Reagent in the preparation of dyestuffs intermediates
   Catalyst or raw material for the preparation of copper catalysts, e.g. preparation of phenols from diazo compounds, preparation of phthalocyanine dyes
 Leather and  Mordant in dyeing
   Reagent in tanning processes
 Metal and  Electrolyte in copper refining
 electrical  Electrolyte in copper plating and electro forming
   Electrolytic manufacture of cuprous compounds, e.g. cuprous oxide
   Constituent of the electrodes and electrolytes in batteries
   Electrolyte in the manufacture of copper powder
   Electrolyte in aluminium plating and anodising
   Copper coating steel wire, prior to wire drawing
   Pickling copper wire, etc., prior to enamelling
   Providing a suitable surface for marking out iron and steel
 Mining  Flotation reagent in the concentration of ores, e.g. zinc blende
 Paint  Raw material for the manufacture of copper naphthenate and other copper compounds for use in anti-fouling paints
   Preparation of certain varnish or paint dryers, e.g. copper oleate, copper stearate
   Preparation of certain pigments, e.g. copper chromate, copper ferrocyanide, copper phthalocyanine
 Printing  Etching agent for process engraving
   Electrolyte in the preparation of electrotype
   Ingredient of printing inks
 Synthetic rubber  Preparation of catalysts used in cracking certain gaseous and liquid petroleum
 and petroleum  Fractions
   Preparation of cuprous chloride, used in the purification of butadiene and in the separation of acetylene derivatives
   Preparation of catalysts used in chlorinating rubber latex
   Purification of petroleum oils
 Textiles  Preparation of copper compounds for rot-proofing canvas and other fabrics
   Rot-proofing sandbags
   Mordant, especially in calico printing
   Cuprammonium process for the production of rayon
   Production of aniline black and diazo colours for dyeing
   "After coppering" to increase the fastness of dyes
   Catalyst in the manufacture of cellulose ethers and in cellulose acetylation
 Miscellaneous  Improving the burning qualities of coke
   Laboratory analytical work
   Ingredient of laundry marking ink
   Dyeing of hair and horn
   Ingredient of hair dyes of the phenylene diamine or pyrogallol type
   Preparation of chlorophyll as a colouring material for food stuffs
   Imparting a green colour in fireworks
   Activator in the preparation of active carbons
   Preservative for wood pulp
   Preservation of fishing nets and hides on trawls
   Obtaining a blue-black finish on steel
   Treatment of carbon brushes
   Ingredient of the solution used for preserving plant specimens in their natural colours
  Impregnation in fruit wrapping papers to prevent storage rots


Uses of Copper Compounds: Table B - Plant Diseases Amenable to Control by Copper Fungicides

  Disease  
Plant Common name Pathogen
Almond Shot hole Clasterosporium carpophilum
  Rust Puccinia pruni-spinosae
  Blossom wilt Sclerotinia laxa and Sclerotinia fructigena
  Leaf curl Taphrina deformans
Aloe Anthracnose Colletotrichum agaves
Antirrhinum Rust Puccinia antirrhini
Apple Pink disease Corticium salmonicolor
  Fireblight Erwinia amylovora
  Bitter rot Glomerella cingulata
  Canker Nectria galligena
  Blotch Phyllosticta solitaria
  Black rot Physalospora obtusa
  Blossom wilt Sclerotinia laxa
  Scab Venturia inaequalis
Apricot Shot hole Clasterosporium carpophilum
  Rust Puccinia pruni-spinosae
  Blossom wilt Sclerotinia laxa and Sclerotinia fructigena
Areca Nut Thread blight Corticium koleroga
Arrowroot Banded leaf blight Corticium solani
Artichoke (Globe)   Ramularia cynarae
Asparagus Rust Puccinia asparagi
Avocado Fruit spot Cercospora purpurea
  Anthracnose (Black spot) Glomerella cingulata
  Bacterial rot Pseudomonas syringae
  Scab Sphaceloma perseae
 Azalea  Flower spot  Ovulinia azaleae
 Banana  Black rot (Die back)  Botryodiplodia theobromae
   Helminthosporiosis  Helminthosporium sp.
   Sigatoka disease (Leaf spot)  Mycosphaerella musicola
 Barley  Snow damage  Typhula itoana
   Covered smut  Ustilago hordei
 Bean (Broad)  Leaf spot  Asochyta pisi
   Chocolate spot  Botrytis cinerea
   Rust  Uromyces fabae
 Bean (French and Runner)  Anthracnose  Colletotrichum lindemuthianum
   Powdery mildew  Erysiphe polygoni
   Halo blight  Pseudomonas medicaginis var phaseolicola
   Rust Uromyces appendiculatus
   Common blight  Xanthomonas phaseoli
 Begonia  Mildew  Oidium begoniae
 Betel  Leaf spot  Bacterium betle
   Leaf spot  Glomeralla cingulata
   Foot rot  Phytophthora colocasiae
   Leaf rot  Phytophthora parasitica
 Blackberry  Cane spot  Elsinoe veneta
 Blueberry  Powdery mildew  Microsphaera alni var. vaccinii
   Leaf rust  Pucciniastrum myrtilli
   Fruit rot  Sclerotinia vaccinii-corymbosi
 Brassicas  Damping off  Oipidium brassicae
   Downy mildew  Peronospora parasitica
   Black leg (Canker)  Phoma lingam
   Black rot  Xanthomonas campestris
 Cacao  Brown pod rot (Die back)  Botryodiplodia theobromae
   Witches' broom  Marasmius perniciosus
   Black pod rot  Phytophthora palmivora
 Calendula  Leaf spot  Cercospora calendulae
 Carnation  Ring spot  Didymellina dianthi
   Leaf spot  Septoria dianthi
   Rust  Uromyces dianthi
  Carrot Blight  Alternaria dauci
  Bacterial soft rot  Bacterium carotovorum
   Leaf spot  Cercospora carotae
 Cassava  Leaf spot  Cercospora henningsii
 Castor oil  Leaf spot  Phyllosticta bosensis
 Cattleya  Black rot  Phythium ultimum
 Celery  Blight  Cercospora apii
   Leaf spot  Septoria apii and Septoria apii graveolentis
 Cherry  Shot hole  Clasterosporium carpophilum
   Leaf spot  Coccomyces hiemalis
   Bitter rot  Glomerella cingulata
   Leaf scorch  Gnomonia erythrostoma
   Bacterial canker  Pseudomonas mors-prunorum
   Brown rot (Blossom wilt)  Sclerotinia laxa and Sclerotinia fructigena
   Scab  Venturia cerasi
 Chestnut  Blight  Endothia parasitica
   Ink disease  Phytophthora cambivora
 Chilli  Blight (Leaf spot)  Cercospora capsici
   Blight (Collar rot)  Phytophthora capsici
   Bacterial spot  Xanthomonas vesicatoria
 Chrysanthemum  Mildew  Oidium chrysanthemi
   Rust  Puccinia chrysanthemi
   Leaf spot Septoria chrysanthemella 
 Cinchona  Damping off  Pythium vexans
 Cineraria    Alternaria senecionis
 Citronella  Collar rot  
 Citrus  Sooty mould  Aithaloderma citri
   Thread blight  Corticium koleroga
   Melanose  Diaporthe citri
   Mal secco  Deuterophoma tracheiphila
   Scab  Elsinoe fawcetti
   Anthracnose (Wither tip)  Gloeosporium limetticola
   Sooty blotch  Leptothyrium pomi
   Black spot  Phoma citricarpa
   Brown rot  Phytophthora spp.
   Black pit  Pseudomonas syringae
   Septoria spot  Septoria depressa
   Canker  Xanthomonas citri
 Coffee  Brown eyespot  Cercospora coffeicola
   Thread blight (Black rot)  Corticium koleroga
   Anthracnose (Die back)  Glomerella cingulata
   Rust  Hemileia vastatrix
   Berry disease  Colletotrichum coffeanum
 Conifers  Blight  Cercospora thujina
   Coryneum blight  Coryneum berckmanii
   Canker  Coryneum cardinale
   Fusiform rust  Cronartium fusiforme
   Blister rust  Cronartium ribicola
   Leaf cast (of Kauri Pine)  Hendersonula agathi
   Needle cast (of Scots Pine)  Lophodermium pinastri
   Phomopsis blight  Phomopsis juniperovora
   Needle cast (of Douglas Fir)  Rhabdocline pseudotsugae
   Root rot  Rhizoctonia cROCCORRXum
 Cotton  Alternarii disease  Alternaria gossypii and Alternaria
   macrospora  
   Sore shin  Corticium solani
 Cowpea  Scab  Cladosporium vignae
 Cucurbits  Leaf blight  Alternaria cucumerina
   Wet rot  Choanephora cucurbitarum
   Anthracnose  Colletotrichum lagenarium
   Wilt  Erwinia tracheiphila
   Powdery mildew  Erysiphe cichoracearum
   Black rot  Mycosphaerella citrullina
   Stem end rot  Physalospora rhodina
   Downy mildew  Pseudoperonospora cubensis
 Currant (Ribes)  Leaf spot  Mycosphaerella grossulariae and Mycosphaerella ribis
   Leaf spot  Pseudopeziza ribis
 Cytisus  Die back  Ceratophorum setosum
 Daffodil  White mould  Ramularia vallisumbrosae
   Fire  Sclerotinia polyblastis
 Dahlia  Leaf spot  Phyllosticta dahliicola and Entyloma dahliae
 Dalo  Leaf spot  Phytophthora colocasiae
 Delphinium  Mildew  Erysiphe polygoni
 Derris  Leaf spot  Colletotrichum derridis
 Dogwood (Cornus)  Spot anthracnose  Elsinoe corni
 Egg Plant  Leaf spot  Ascochyta melongenae
   Damping off  Corticium solani
 Fig  Leaf fall and Fruit rot  Cercospora bolleana
   Rust  Cerotelium fici
   Thread blight  Corticium koleroga
   Canker  Phomopsis cinerescens
   Blight  Phizoctonia microsclerotia
 Filbert  Bud blight  Xanthomonas corylina
 Fruit trees  Crown gall  Bacterium tumefaciens
 Gambier  White root rot  Fomes lignosus
 Gardenia  Canker  Phomopsis gardenia
 Gerbera  Leaf spot  Cercospora sp.
 Ginseng  Blight  Alternaria panax
 Gladiolus  Corm rot  Botrytis gladiolorum
 Gooseberry  Die back  Botrytis cinerea
   Leaf spot  Mycosphaerella grossulariae
   Cluster cup rust  Puccinia pringshemiana
   American mildew  Sphaerotheca mors-uvae
 Grasses  Snow mould  Calonectria graminicola
   Red thread  Corticium fusiforme
   Brown patch of lawns  Rhizoctonia and Holminthosporium spp.
   Stripe smut  Ustilago striiformis
 Ground nut  Leaf spot  Cercospora arachidicola and Cercospora personate
   Stem rot (Southern blight)  Sclerotium rolfsii
 Guava  Leaf spot  Cephaleuros mycoidea
   Thread blight  Corticium koleroga
   Rust  Puccinia psidii
 Hellebore    Coniothyrium hellebori
 Hollyhock  Rust  Puccinia malvacearum
 Hop  Downy mildew  Pseudoperonospora humuli
   Powdery mildew  Sphaerotheca humuli
 Hydrangea  Mildew  Oidium hortensiae
 Leek  Mildew  Peronospora destructor
   White tip  Phytophthora porri
 Lettuce  Downy mildew  Bremia lactucae
   Ring spot  Marssonina panattoniana
Lily  Blight  Botrytis elliptica
 Maize  Downy mildew  Sclerospora philippinensis
 Mango  Red rust  Cephaleuros virescens
   Anthracnose  Colletotrichum gloeosporioides
   Scab  Elsinoe mangiferae
   Bacterial black spot  Erwinia mangiferae
   Anthracnose  Gloeosporium mangiferae
   Powdery mildew  Oidium mangiferae
 Medlar  Scab  Venturia eriobotryae
 Millet (Italian)  Smut  Ustilago crameri
 Mushroom  White mould  Mycogone perniciosa
   Bacterial blotch(Brown blotch)  Pseudomonas tolaasi
 Nectarine  Shot hole  Clasterosporium carpophilum
   Rust  Puccinia pruni-spinosae
   Blossom wilt  Sclerotinia laxa and Sclerotinia fructigena
   Leaf curl  Taphrina deformans
 Oats  Loose smut  Ustilago avanae
 Olive  Leaf spot  Cycloconium oleaginum
 Onion  Downy mildew  Peronospora destructor
 Orchids  Fusarium  Macrophoma and Diplodia spp.
 Paeony  Blight  Botrytis peaoniae
   Bud death  Sphaeropsis paeonia
 Palm ( Palmyra)  Leaf spot  Pestalotia palmarum
 Passion fruit  Brown spot  Alternaria passiflorae
   Grease spot  Pseudomonas passiflorae
 Pawpaw  Leaf spot  Ascochyta caricae
   Anthracnose (Fruit rot)  Colletotrichum gloeosporioides
   Powdery mildew  Oidium caricae
   Hard rot  Phytophthora parasitica
 Peach  Shot hole  Clasterosporium carpophilum
   Rust  Puccinia pruni-spinosae
   Blossom wilt  Sclerotinia laxa and Sclerotinia fructigena
   Leaf curl  Taphrina deformans
 Pear  Scab ( America)  Cladosporium effusum
   Thread blight  Corticium koleroga
   Firebiiglit  Erwinia amylovora
   Bitter rot  Glomerella cingulata
   Leaf spot (Leaf speck)  Mycosphaerella sentina
   Scab  Venturia pirina
 Pecan  Scab  Cladosporium effusum
   Thread blight  Corticium koleroga
   Vein spot  Gnomonia nerviseda
   Liver spot  Gnomonia caryae var. pecanae
 Pepper(Red)  See Chilli)  
 Persimmon  Canker  Phomopsis diospyri
 Pineapple  Heart or stern rot  Phytophthora parasitica
 Piper betle  (See Betel)  
 Plantain  Black tip  Helminthosporium torulosum
 Plum  Shot hole  Clasterosporium carpophilum
   Black rot  Dibotryon morbosum
   Bacterial canker  Pseudomonas mors-prunorum
   Wilt  Pseudomonas prunicola
   Rust  Puccinia pruni-spinosae
   Brown rot  Sclerotinia fructigena
   Blossom wilt  Sclerotinia laxa
   Watery rot (Pocket plums)  Taphrina pruni
   Bacterial spot  Xanthomonas pruni
 Poplar    Septogloeum populiperdun
 Poppy  Downy mildew  Peronospora arborescens
 Potato  Early blight  Alternaria solani
   Grey mould  Botrytis cinerea
   Blight (Late blight)  Phytophthora infestans
   Dry rot  Sclerotium rolfsii
 Quince  Brown rot  Sclerotinia fructigena
   Shot hole  Clasterosporium carpophilum
 Raspberry  Spur blight  Didymella applanata
   Cane spot (Anthracnose)  Elsinoe veneta
   Cane wilt  Leptosphaeria coniothyrium
 Rhododendron  Leaf scorch (Bud blast)  Pycnostysanus azaleae
 Rhubarb  Downy mildew  Peronospora jaapiana
 Rice  Brown spot  Ophiobolus miyabeanus
   (Helmintliosporiosis)  
   Blast  Piricularia oryzae
 Rose  Black spot  Diplocarpon rosae
   Downy mildew  Peronospora sparsa
   Rust  Phragmidium mucronatum
   Leaf spot (Anthracnose)  Sphaceloma rosarum
   Mildew Sphaerotheca pannosa
 Rubber  American leaf disease  Dothidella ulei
   White root rot  Fomes lignosus
   Leaf disease  Helminthosporium heveae
   Stem disease  Pestalotia palmarum
   Abnormal leaf fall  Phytophthora palmivora
 Rye grass  Blind seed  Phialea temulenta
 Safflower  Rust  Puccinia carthami
 Seedlings  Damping off  Pythium debaryanum, Pythium and Rhizoctonia spp, Sclerotinia sclerotiorum,etc
 Sorghum  Covered smut  Sphacelotheca sorghi
 Spinach  Leaf spot  Heterosporium variabile
   Downy mildew  Peronospora effusa
 Spindle tree  Mildew  Oidium euonymi-japonicae
 Stock  Leaf spot  Alternaria raphani
 Strawberry  Leaf spot  Mycosphaerella fragariae
 Sugar beet  Leaf spot  Cercospora beticola
   Downy mildew  Peronospora schactii
 Sunflower  Rust  Puccinia helianthi
   Wilt  Sclerotinia sclerotiorum
 Sweet potato  Wilt  Fusarium spp.
 Taro  Leaf spot  Phytophthora colocasiae
 Tea  Black rot (Die back)  Botryodiplodia theobromae
   Red rust  Cephaleuros niycoidea
   Blister blight  Exobasidium vexans
   Grey blight  Pestalotia theae
 Tobacco  Brown spot (Red rust)  Alternaria longipes
   Leaf spot  Ascochyta nicotianae
   Frog eye  Cercospora nicotianae
   Blue mould (Downy mildew)  Peronospora tabacina
   Wildfire  Pseudomonas tabacum
 Tomato  Early blight  Alternaria solani
   Leaf mould  Cladosporium fulvum
   Anthracnose  Colletotrichum phomoides
   Fruit rot  Didymella lycopersici
   Mildew  Leveilluia taurica
   Fruit rot  Phytophthora capsici
   Foot rot  Phytophthora cryptogea
   Blight (Late blight)  Phytophthora infestans
   Leaf spot  Septoria lycopersici
   Grey leaf spot  Stemphylium solani
   Bacterial spot  Xanthomonas vesicatoria
 Tuberose  Blight  Botrytis elliptica
 Tung  Thread blight  Corticium koleroga
 Veronica    Septoria exotici
 Vine (Grape)  "Coitre"  Coniothyrium diplodiella
   Anthracnose  Elsinoe ampelina
   Black rot  Guignardia bidwellii
   Leaf spot  Isariopsis fuckelli
   Bitter rot  Melanconium fuligineum
   Angular leaf spot  Mycosphaerella angulata
   Downy mildew  Plasmopara viticola
   Totbrenner  Pseudopeziza tracheiphila
   Powdery mildew  Uncinula necator
 Vine (Sultana)  Sooty dew  Exosporium sultanae
 Viola  Leaf spot  Centrospora acerina
 Violet  Scab  Sphaceloma violae
 Walnut  Ring spot  Ascochyta juglandis
   Anthracnose (Blotch)  Gnomonia leptostyla
   Downy leaf spot  Microstroma juglandis
   Blight  Xanthomonas juglandis
 Wheat  Root rot  Gibberella zeae
   Rust  Puccinia spp
   Snow damage  Pythium sp.
   Bunt Tilletia caries and Tilletia faetida 
 Willow  Black canker  Physalospora miyabeana
   Scab  Venturia chlorospora
 Zinnia  Wilt  Sclerotinia sclerotiorum

Uses of Copper Compounds: Agricultural Uses

Copper compounds have their most extensive employment in agriculture where the first recorded use was in 1761, when it was discovered that seed grains soaked in a weak solution of copper sulphate inhibited seed-borne fungi. By 1807 the steeping of cereal seeds in a copper sulphate solution for a limited time and then drying them with hydrated lime became the standard farming practice for controlling stinking smut or bunt of wheat, which by then was endemic wherever wheat was grown. Flour milled from bunted wheat had to be fed to animals or sold cheaply to ginger bread makers who had found a way of masking its bad taste and color with ginger and treacle. Within a few decades, so general and effective had become the practice of treating seed grains with copper sulphate that the appearance of more than a few bunted ears in a field of wheat was looked upon as a sign of neglect on the part of the farmer. So well have copper compounds controlled bunt that today this seed-borne disease is no longer of any economic importance.

The greatest breakthrough for copper salts undoubtedly came in the 1880's when the French scientist Millardet, while looking for a cure for downy mildew disease of vines in the Bordeaux district of France, chanced to notice that those vines, bordering the highways and which had been daubed with a paste of copper sulphate and lime in water in order to make the grapes unattractive to passers-by, appeared freer of downy mildew. This chance observation led to experiments with mixtures of copper sulphate, lime and water and in 1885 Millardet announced to the world that he had found a cure for the dreaded mildew. This mixture became known as Bordeaux mixture and saw the commencement of protective crop spraying.

Within a year or two of the discovery of Bordeaux mixture, Burgundy mixture, which also takes its name from the district of France in which it was first used, appeared on the scene. Burgundy mixture is prepared from copper sulphate and sodium carbonate (soda crystals) and is analogous to Bordeaux mixture.

Trials with Bordeaux and Burgundy mixtures against various fungus diseases of plants soon established that many plant diseases could be prevented with small amounts of copper applied at the right time and in the correct manner. From then onwards copper fungicides have been indispensable and many thousands of tons are used annually all over the world to prevent plant diseases.

As a generalization, soils would be considered copper deficient if they contain less than two parts per million available copper in the context of plant health. However, where the soil contains less than five parts per million available copper, symptoms of copper deficiency may be expected in animals. The increasing use of chemical fertilizers which contain little or no copper are denuding soils of readily available copper and creating a deficiency of the element in plants and through them in animals. Copper compounds are now being added to the ever increasing copper deficient soils either direct or in combination with commercial fertilizers. This is particularly the case where the fertilizers are rich in nitrogen and phosphorus. Animals grazing on copper deficient pastures or obtaining an inadequate amount of copper through their normal diet will benefit from mineral supplements containing copper.

Copper sulphate, because of its fungicidal and bactericidal properties, has been employed as a disinfectant on farms against storage rots and for the control and prevention of certain animal diseases, such as foot rot of sheep and cattle.

Uses of Copper Compounds: Copper Sulphate's Role in Agriculture

Copper sulphate has many agricultural uses (see below ) but the following are the more important ones:

  • Preparation of Bordeaux and Burgundy mixtures on the farm
  • Control of fungus diseases
  • Correction of copper deficiency in soils
  • Correction of copper deficiency in animals
  • Stimulation of growth for fattening pigs and broiler chickens
  • A molluscicide for the destruction of slugs and snails, particularly the snail host of the liver fluke

Preparation of Bordeaux and Burgundy Mixtures on the Farm

Because of their importance to farmers, instructions concerning the dissolving of copper sulphate and the preparation of both Bordeaux and Burgundy mixtures have been included in the text.

Dissolving Copper Sulphate

Iron or galvanised vessels must not be used for the preparation of copper sulphate solutions. Plastic vessels, now freely available, are light and very convenient. To make a strong solution, hang a jute sack of copper sulphate so that the bottom of it dips a few inches only in the water. The copper sulphate will dissolve overnight. Copper sulphate dissolves in cold water to the extent of about 3 kg per 10 litres. If more than this is placed in the sack described above, then a saturated solution will be obtained and it may be used without serious error on the basis that it contains 3 kg copper sulphate per 10 litres.

Preparation of Bordeaux Mixture

Bordeaux mixture is prepared in various strengths from copper sulphate, hydrated lime (calcium hydroxide) and water. The conventional method of describing its composition is to give the weight of copper sulphate, the weight of hydrated lime and the volume of water in that order. The percentage of the weight of copper sulphate to the weight of water employed determines the concentration of the Bordeaux mixture. Thus a 1% Bordeaux mixture, which is the normal, would have the formula 1 :1:100the first 1 representing 1 kg copper sulphate, the second representing 1 kg hydrated lime, and the 100 representing 100 litres (100 kg) water. As copper sulphate contains 25% copper metal, the copper content of a 1% Bordeaux mixture would be 0-25 % copper. The quantity of lime used can be reduced considerably. Actually 1 kg copper sulphate requires only 0.225 kg of chemically pure hydrated lime to precipitate all the copper. Good proprietary brands of hydrated lime are now freely available but, as even these deteriorate on storage, it is safest not to exceed a ratio of 2:1. i.e. a 1:0.5:100 mixture.

In preparing Bordeaux mixture, the copper sulphate is dissolved in half the required amount of water in a wooden or plastic vessel. The hydrated lime is mixed with the balance of the water in another vessel. The two "solutions" are then poured together through a strainer into a third vessel or spray tank.

Preparation of a 1% Burgundy Mixture

Dissolve separately 1 kg copper sulphate in 50 litres water and 125 kg washing soda (or 0.475 kg soda ash) in 50 litres water and slowly add the soda solution to the copper sulphate solution with stirring. Control of fungus diseases

Bordeaux and Burgundy mixtures have been found effective in controlling a whole host of fungus diseases of plants. Normally a 0.5 % to 1 % Bordeaux or Burgundy mixture applied at 2 to 3 week intervals suffices to control most copper-susceptible fungi.

Generally, once the fungus spores have alighted on the host plant and penetrated the tissues it is difficult to control them. The principle of control must in most cases depend on protection, ie preventing the fungus spores from entering the host tissues. Copper fungicides are noted for their tenacity and for this reason, are much to be preferred in areas of high rainfall.

The simplest method of control is to apply a protective coating of Bordeaux or Burgundy mixture (or other copper fungicides) to the susceptible parts of the plant, so that spores alighting on them come in contact with the protective film of copper and are killed instantly. It is thus important to remember that the first spraying must ideally be made just before the disease is expected and continued at intervals throughout the susceptible period. For this reason it is important to take advantage of the early warning schemes which are in operation to ensure greater accuracy of the timing of the first spraying.

It must also be remembered that fungi are plants and that control measures that will kill them may not always leave the host plant unaffected. The use of too concentrated a fungicide mixture must, therefore, be guarded against, particularly for the early sprays.

Copper fungicides have been reported effective against numerous plant diseases. A list, by no means exhaustive, of some 300 diseases that have been found amenable to control by copper fungicides, appears in Table B.

Correction of Copper Deficiency in Soils

Where copper deficiency has been confirmed by soil analysis or field diagnosis, whether in plants or animals, it can be corrected very simply either by applying 50 kg copper sulphate per hectare in the form of a fertiliser before sowing or by spraying the foliage of the young cereal plants, when they are about 150 mm high, with 750 grams copper sulphate (dissolved in from 400 to 2,000 litres water) per hectare. The soil application has generally given the better results and has the advantage that it may have a residual effect for more than ten years. The foliar application has to be given annually to each crop. An alternative is to add a copper containing slag (normally about 1% to 2 % copper) at a rate of a tonne to the hectare.

Correction of Copper Deficiency in Animals

A method of correcting copper deficiency in livestock is to treat the soil on which animals graze. For example, in Australia and New Zealand swayback in lambs is being prevented by top dressing copper deficient pastures with 5 to 10 kg copper sulphate per hectare some time before lambing begins.

Other methods include drenching periodically with a copper sulphate solution; incorporating copper sulphate in salt and other animal licks; or by what is probably the most general method, incorporating copper sulphate along with other minerals and vitamins in the form of carefully blended supplements in the feeding stuffs.

Stimulation of Growth for Fattening Pigs and Broiler Chickens

The inclusion of up to as much as 0.1% copper sulphate in the diet of bacon and pork pigs and broiler chickens stimulates appetite and produces increased growth rate with a marked improvement in feed conversion.

A molluscicide for the destruction of slugs and snails, particularly the snail host of the liver fluke. All likely habitats of the liver fluke snail should be treated with copper sulphate at the rate of 25 kg to the hectare at least twice a year in June and August (northern hemisphere) or December and February (southern hemisphere).

 

Copper Sulphate-CuSO4 x 5H2O

 

 

 

 

 

 

 

 

                               (CuSO4X5H2O)

 

>98,20%

 

 

 

 

 

 

 

 

Humidity

 

max. 2%

 

 

 

 

 

 

 

 

 

Water insoluble

0.01%

 

 

 

 

 

 

 

 

 

(Acidity) Free H2SO4

> 0.10%

 

 

 

Ph:

 

>3,5

 

 

 

Cu

 

>24.94%

 

 

 

Fe:

 

>0.05%

 

 

 

Ni:

 

19.6mg/kg

 

 

 

Pb:

 

25.9mk/kg

 

 

 

As:

 

>0.012%

 

 

 

Cd:

 

<5.00mg/kg

 

 

Hg:

 

<0.10 mg/kg

 

 

F:

 

<5.00mg/kg

 

Apperance

 

 

Crystal/Liquid

 

Dimension(crystal size)

 

80-800µ

 

 

Colour:

 

 

Blue

 

 

Density:

 

 

~1.188 g/sm³

In Table A some of the many uses of copper sulphate are listed. Copper Sulphate-CuSO4 x 5H2O
(CuSO4X5H2O) ................ >98,20%
Humidity ............................ max. 2%
Water insoluble ................. 0.01%
(Acidity) Free H2SO4......... > 0.10%
Ph:.................................... >3,5
Cu .................................... >24.94%
Fe: ................................... >0.05%
Ni: ................................... 19.6mg/kg
Pb: ................................... 25.9mk/kg
As: .................................. >0.012%
Cd: ................................. <5.00mg/kg
Hg: ................................. <0.10 mg/kg
F: ................................... <5.00mg/kg
 
 
Apperance ............................. Crystal
Dimension(crystal size) ............... 80-800µ
Colour: ............................... Blue
Density: ............................. ~1.188 g/sm³
 
Copper Sulphate       INDUSTRIAL GRADE :
Molecular Formula:CuSO4 5H2O
CuSO4.5H2O≥.................. 96
Cu≥ .................................. 24.50
Pb≤ .................................. 20ppm
As≤ .................................. 20ppm
Free Acid ≤ ...................... 0.3
Insoluble matter≤ ............. 0.2

Copyright © 2021 Powered By MUSCAT AND BARKA BUSINESS TRADING - All Rights Reserved